Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
The North American SM-64 Navaho was a supersonic intercontinental cruise missile project built by North American Aviation (NAA). The final design was capable of delivering a nuclear weapon to the USSR from bases within the US, while cruising at Mach 3 (3,700 km/h; 2,300 mph) at 60,000 feet (18,000 m) altitude. The missile is named after the Navajo Nation.
The original 1946 project called for a relatively short-range system, a boost-glide weapon based on a winged V-2 rocket design. Over time the requirements were repeatedly extended, both due to the US Air Force's desire for longer ranged systems, as well as competition from similar weapons that successfully filled the shorter-range niche. This led to a new design based on a ramjet powered cruise missile, which also developed into a series of ever-larger versions, along with the booster rockets to launch them up to speed.
Through this period the US Air Force was developing the SM-65 Atlas, based on rocket technology developed for Navaho. Atlas filled the same performance goals but could do so with total flight times measured in minutes rather than hours, and flying at speeds and altitudes which made them immune to interception, as opposed to merely very difficult to intercept as in the case of Navaho. With the launch of Sputnik 1 in 1957 and the ensuing fears of a missile gap, Atlas received the highest development authority. Navaho continued as a backup, before being canceled in 1958 when Atlas successfully matured.
Although Navaho did not enter service, its development provided useful research in a number of fields. A version of the Navaho airframe powered by a single turbojet became the AGM-28 Hound Dog, which was carried towards its targets on the Boeing B-52 Stratofortress and then flew the rest of the way at about Mach 2. The guidance system was used to guide the first Polaris submarines. The booster engine design, spun off to NAA's new Rocketdyne subsidiary, was used in various versions of the Atlas, PGM-11 Redstone, PGM-17 Thor, PGM-19 Jupiter, Mercury-Redstone, and the Juno series; it is therefore the direct ancestor of the engines used to launch the Saturn I and Saturn V moon rockets.